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Various sensors integrated in the wearable device provide massive data for activity recognition. In this paper, a context-aware hierarchical approach
is proposed for the recognition of activities using accelerometers on smartphones and smartwatches. We adopt a simple variance threshold based
method and separate the activities into two major categories named body-fixed set and body-unfixed set according to the inherent characteristics of
these activities in the first layer. Next, the Support Vector Machine approach is used respectively for the two sets in the second layer. A probability
distribution over activity labels instead of a single activity result is generated in this layer. In the third layer, the contextual information is
introduced to improve the classification result. Our comparative study with ordinary Support Vector Machines and other alternative methods
has shown that our method is more robust and accurate.
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1. INTRODUCTION

Human activity recognition (HAR) aims to recognize activities
from a series of observations on the actions of subjects and the
environmental conditions. It is the basis of many areas such as
health care [1–3], Smart Home [4–7], Human-Computer Inter-
action (HCI) [8], and ubiquitous computing [9]. Lots of work
has been done on HAR using accelerometers [9,10]. Some of
these methods focused on using multiple accelerometers [11–
13], other methods attempted to utilize only one single ac-
celerometer [14–17] and determine the optimal placement of
it [18]. With the popularization of smartphones, separated ac-
celerometers are replaced by sensors integrated in the device.
These smart devices provide a more convenient way to collect
data.

Multi-sensor performs better than single-sensor [11,19], since
these sensors can capture data from different places at the same
time. However, subjects may feel obtrusive using current mul-
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tiple accelerometers capture systems since there are so many
devices attached on the body [20]. On the other hand, from a
single accelerometer or unobtrusive smartphone, most studies
could only recognize several simple activities such as walking,
standing due to the limitation of position and the number of
sensors. Not many methods have tried to combine additional
wearable devices with smartphones [21,22].

Due to the limited information that accelerometers provide,
especially the single accelerometer method, some methods try
to recognize complex activities by utilizing environmental at-
tributes [12,20,23]. These attributes include temperature, hu-
midity, audio level, and the location information obtained by
GPS. Among these attributes, GPS data is important part of the
contextual information, and they are widely used in the context-
aware activity recognition. However, GPS sensors perform far
from being satisfactory indoors which affects the performance
of HAR.

In this paper, a hierarchical method is proposed to optimize
the activity classifier by dividing the process of recognition into
three stages. We utilize two mobile devices (i.e. smartphone and
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smartwatch) and various embedded sensors for recognition. The
pipeline of the method is shown in Figure 1. First in the Body
Intensity (BI) layer, the hierarchical classifier divides the activity
dataset into two sets, namely body-fixed set and body-unfixed
set, according to the motion of the thigh. The term “body-fixed”
means the torso of subject is in a “fixed” state or show slight
fluctuation and sometimes with limb movements (e.g. reading,
stretching), while the “body-unfixed” indicates an “unfixed” and
moving torso (e.g. running, ascending stairs). This layer utilizes
the inherent characteristics of two major categories of activities
and these characteristics could be captured by our data collection
scheme. Then in the Support Vector Machine Classification (SC)
layer, the SVM is utilized to classify the two sets respectively.
A probability distribution over activity labels instead of the final
activity result is generated in this layer, preparing for the fur-
ther contextual information fusion in next stage. Finally in the
Contextual Fusion (CF) layer, we propose a novel systematic
approach which combines the activity contextual information
with the probability distribution in last layer to recalculate the
probability and improve the accuracy. A naÃ¯ve Bayes model
is presented for the fusion of time and location information. In
order to deal with the GPS signal missing problem when sub-
ject performs activities indoors, a WiFi-assisted GPS labeling
method is proposed to acquire the location information of in-
door activities.

The rest of the paper is organized as follows. We discuss
the related work in section 2. Section 3 describes the extracted
features used in this paper, as well as their extraction methods.
Then the context-aware hierarchical approach is presented in
section 4. Three layers are demonstrated respectively in this
section. Section 5 presents a series of comparative evaluations
to validate the effectiveness of the proposed approach. Finally,
we conclude the paper in section 6.

2. RELATED WORK

Accelerometer-based activity recognition has been extensively
investigated. The majority of the past work mainly focused on
three goals. The first and most important goal is to recognize
more activities and achieve high recognition accuracy. This
is usually addressed by placing multiple sensors on subjects.
However, subjects may feel obtrusive wearing too much sensors
across the whole body, which is the second problem that needs
to be addressed especially when the implemented recognition
system is actually applied in real life. The third focus of past
work is the context utilization. Rational utilization of contextual
information can be an effective way to improve accuracy. In this
section, related works and solutions concerning the mentioned
three goals are discussed.

To enhance the recognition performance and recognize more
complex activities, previous work tends to use multiple ac-
celerometers or additional sensors. Multiple accelerometers
prove to be more accurate comparing the single accelerometer
solution when recognizing complex activities, since accelerome-
ters placed at different body positions provide richer limb move-
ment data and capture more details. For example, the sensor
on the dominant wrist could provide critical information for
some daily activities such as brushing teeth or waving hands

[11,22,24]. Bao & Intille [11] used five sensors distributed over
the whole body. Through C4.5 Decision Tree classifiers, they
recognized up to twenty activities with overall recognition rate
84.26%. Tapia et al. [22] used five tri-axial wireless accelerom-
eters and a wireless heart rate monitor, and the recognition accu-
racy of their method is 94.6% on their subject-dependent gym-
nasium activity sets also using C4.5 classifiers.

Recent deep learning methods have made breakthroughs in
image and speech recognition. For multi-accelerometer based
activity recognition, several pioneering works have reported
state-of-the-art performance on several benchmark problems us-
ing deep convolutional neural networks (convnet) and their au-
tomatic feature extraction mechanism. Zeng et al. [25] is the
first one who use convnet and automatic feature extraction for
activity recognition. One convolutional layer structure and par-
tial sharing weight is used and achieves good results on sev-
eral benchmark datasets. Yang et al. [26] constructed a deep
convnet with three convolutional layers and further improve the
recognition performance. In [27], a deep framework for activity
recognition based on convolutional and LSTM recurrent neural
networks is proposed, which shows apparent advantage of dis-
tinguishing similar kind activities, as well as the ability of fusing
homogeneous sensor modalities. This research further improves
the F1 scores in some benchmark datasets.

Although better results and more activity types can be ob-
tained by adding more accelerometers or other sensors especially
combining the recent deep learning approaches, the number of
accelerometers is, in fact, completely ignored. Even up to 19
sensors were used across the body when collecting data [28].

Obviously, subjects may feel obtrusive wearing too much sen-
sors across the whole body. To alleviate such uncomfortable
feeling and reduce the redundant sensors, the optimal placement
of accelerometer is discussed and most work consider the wrist
and thigh (trouser pocket) as the best positions. Bao & Intille [11]
found that just using the accelerometers on the thigh and wrist
did not decrease the recognition performance apparently. In [29]
a dynamic Bayesian networks for the exemplary application ac-
tivity recognition is proposed, which compared the performance
of accelerometers for different parts of the body and decided
the belt, or waist, as the best place. In [30] an autoregressive
(AR) model is utilized to recognize four activities, and it found
that the best place is the trouser pocket. Other studies suggested
that the optimal placement is wrist [22,31]. In fact, the optimal
placement depends on the type of activity. For the ambulation
activities, the accelerometer on the belt or in the trouser pocket is
enough. However, the same location could not provide sufficient
information in recognizing activities involving hands.

Another way of dealing with obtrusiveness is using accelerom-
eters embedded in wearable devices. These devices are usually
necessary to carry (e.g. smartphone) or used to replace tra-
ditional wearing products (e.g. smartwatch) [32]. People are
accustomed to wearing these devices comparing to multiple sen-
sors, therefore these mobile devices provide an unobtrusive way
to capture data. Moreover, people would like to put their phones
in the trouser pocket which is one of the optimal placements of
accelerometer mentioned before. In [33] an activity classifying
system was built relying on sensors within a single smartphone.
Low-cost and lightweight classifiers were evaluated and opti-
mized to achieve a better result in the constrained computational
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Figure 1 Overall architecture of the proposed method.

resources. Kwapisz et al. [34] used a smartphone to recognize
five activities including standing, walking, jogging, ascending
stairs, and descending stairs. Three classification techniques in-
cluding J48 Decision Trees, Logistic Regression and multilayer
Neural Networks were used and achieved high levels of accuracy
in most cases. Khan et al. [35] proposed a smartphone-based
recognition method which using Kernel Discriminant Analy-
sis to address the high within-class varies problem that the ac-
celerometer varies for the same activity due to the random place-
ment of phone. Five activities were recognized with high aver-
age accuracy through Artificial Neural Network. Ronao and Cho
[36] successfully applied the recent deep learning approach on
smartphone-based activity recognition. A multi-layer convnet is
proposed to automatically extract features from raw time-series
sensor data. Cumbersome feature hand-crafting is omitted. The
system was evaluated on a dataset composed of six activities and
achieved the state-of-the-art performance. Some other methods
focus on additional sensors combined with smartphone for ac-
tivity recognition. In [19] a smartphone accelerometer paired
with a dedicated chest sensor is used to detect only six types
of activity. Similarly, Lara et al. [37] used an additional strap
placed on the chest and also detected only six activities.

It is worth mentioning here that although smartphone-based
methods can, to a great extent, address the obtrusiveness, most
of these methods can only recognize limited and simple activity
categories (normally 4∼6 activities). This leads to a compro-
mise problem between single accelerometer solution and multi-
accelerometer solution. Moreover, in spite of the great potential
of smartphones or multi-accelerometer network when used for
recognition, these “context-missing” approaches often perform
badly and in some cases even completely confused to recognize
any high level activities such as brushing teeth or eating. For
these reasons, contextual information is considered.

People tend to do certain activities in specific time and lo-
cations. Such contextual information is explored to assist in
recognizing activities and improving accuracy. Liao et al. [12]
extracted activities from traces of GPS data using hierarchical
Conditional Random Fields. By generating a consistent model
of activities and places of a person, some contextual activities
such as working and getting on bus were able to be recognized.
In [13] an ontological reasoning method through receiving lo-
cation information from GPS sensors is introduced for complex
activity recognition. Adding location information or labeling
significant places is helpful to recognize more activities. How-
ever, their method suffers failure indoors as the GPS performs
badly indoors because of signal missing. Han et al. [20] pro-
posed a hierarchical activity recognition framework including a
location-aware engine. Outdoor activities are enriched due to
the introduction of GPS data. All indoor locations without GPS
signal are considered to be home or office, and these two places
are not distinguished from each other. Only three activities (i.e.
walking, sitting and standing) are supposed to happen in these
indoor places.

In summary, the work is motivated by the following limitations
of activity recognition. On one hand, the multiple accelerometer
methods could recognize more activities with a high accuracy,
but subjects may feel obtrusive when wearing too much sen-
sors. On the other hand, high accuracy and unobtrusiveness has
smartphone or other single accelerometer based methods (sup-
pose the single accelerometer is worn at the optimal placement)
achieved, most previous work, however, reported limited num-
ber of activities. Motivated by these existing limitations, we
propose an approach to recognize 13 daily activities in an un-
obtrusive way. Using two common mobile devices, smartphone
and smartwatch, a compromise is achieved which has high ac-
curacy, unobtrusiveness, and the ability of recognizing multiple
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and complex activity categories. Adopting a hierarchical scheme
and a novel systematic approach, the contextual information is
fused rationally to further improve the recognition accuracy, es-
pecially those high level activities.

3. FEATURE EXTRACTION

3.1 Activities

Thirteen activities were studied, include eating, typing, drink-
ing, waving hands, reading, stretching, brushing teeth, sleeping,
washing hands, walking, running, ascending stairs, descending
stairs (Table 1). We choose these activities since these thirteen
activities could cover common daily activities and represent life
style of a person. During the data capture, nearly half of these
activities have long duration, including eating, typing, reading,
brushing teeth, sleeping, washing hands, walking, and running.
The rest activities have a very short duration, thus we required
subjects to repeat multiple times.

3.2 Feature extraction

In order to extract features from data, all data is regularized into
7-second samples. For long duration activities such as walking
and running, data is divided into 7-second segments which are
sufficient to capture pattern in these periodic activities. Each
segment is used as an example. For the short duration activities
such as ascending stairs and drinking, most cases last less than
7 seconds thus the activity process is directly collected within a
7-second window in collection stage. Each 7-second sample is
used directly for feature extraction without further dividing. The
short duration activities cannot be divided because the features
extraction method of them needs at least a complete process,
not a fragment of it. Features that extracted from the raw data
are presented in Table 2. Collection time and location are also
considered as contextual attributes.

Standard statistical metrics mean and variance of each axis
(Feature1-4) are used as features because of their good perfor-
mances. The mean value of each axis can accurately reflect the
posture of body or wrist, for example, sitting or standing can be
detected by the mean value of the accelerometer data of thigh.
The variance of each axis can reflect the current exercise inten-
sity. The energy value (Feature 6, 7) [16] is also introduced
and it is calculated through the sum of the squared discrete FFT
component magnitudes of the signal, and the sum is normalized
by a certain window as presented in (1)

energyx =

|x |∑
i=1

|xi |2

w
(1)

where x is the ith FFT component of the window for x axis and
w is the window length.

In addition, the sum of variance and energy values of the phone
for three axes (Feature 5, 8) are calculated respectively, as pre-

sented in (2) and (3).

sumv = varx + vary + varz (2)

sume = energyx + energyy + energyz (3)

where sumv is the sum of the 3-axis variance and sume is the
sum of the 3-axis energy. varx , vary , varz are variance of x , y
and z axis. energyx , energyy, energyz are energy of x , y and z
axis.

The sum is calculated to determine the threshold in BI layer.
Finally, the collection time label (Feature 9) and collection loca-
tion label (Feature 10) are extracted from the raw data as feature
of contextual information.

4. THE CONTEXT-AWARE HIERARCHI-
CAL APPROACH

There are three levels in the proposed hierarchical approach
named Body Intensity (BI) layer, SVM Classification (SC) layer,
and Contextual Fusion (CF) layer. These phases will be dis-
cussed separately in the following 4.1, 4.2, 4.3 sections.

4.1 Body Intensity layer

First, in the BI layer, the activities are separated into two sets
called body-fixed set and body-unfixed set depending on the in-
tensity of activities. We mainly focus on the movement of thigh,
which can be measured by the accelerometer data recorded by
smartphone. Nine kinds of activities are considered as body-
fixed activities including eating, typing, drinking, waving hands,
reading, stretching, brushing teeth, sleeping, and washing hands.
Thigh positions in these nine activities remain static in chair or
show slight fluctuation (Figure 2e-h). On the other hand, data
from body-unfixed activity set including running, walking, as-
cending stairs and descending stairs (Figure 2a-d) vibrate much
than the other set. Activities in this set show significant differ-
ence in the data captured from the thigh; therefore, they could
be distinguished from the body-fixed set based on a threshold
which is determined through experiments.

This layer utilizes the inherent characteristics of two major
categories of activities. The characteristics are reflected by the
movement of thigh and they can be captured by the smartphone
in the pocket of pants.

Two features, energy and variance,are tested to divide the thir-
teen activities into body-fixed set and body-unfixed set. Both of
them are effective in discriminating low intensity activities from
moderate or high intensity activities. Thus, the sum of energy
and variance of three axes are extracted. By comparing the num-
ber of misclassified samples in experiment based on these two
features, the better one will be chosen as the feature to generate
threshold which is given in Evaluation section.

4.2 SVM Classification layer

The SVM Classification (SC) layer is the core layer of the pro-
posed method. In the SC layer, two SVM classifiers are trained
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Table 1 Activities
Long
Duration
Activities

Eating Typing Brushing
teeth

Reading Walking Running Sleeping

Short
Duration
Activities

Drinking Stretching Washing
hands

Waving
hands

Ascending
stairs

Descending
stairs

Table 2 Features extracted from each sample of raw acceleration data.

No. Feature Description
1 Mean value for each axis(x, y, z) of phone
2 Mean value for each axis(x, y, z) of watch
3 Variance for each axis(x, y, z) of phone
4 Variance for each axis(x, y, z) of watch
5 Sum of the 3-axis variance of phone
6 Energy value for each axis(x, y, z) of phone
7 Energy value for each axis(x, y, z) of watch
8 Sum of the 3-axis energy value of phone
9 Collection time label

10 Collection location label

respectively for body-fixed activities and body-unfixed activities.
Based on the output of BI layer, the body-fixed and body-unfixed
SVM classifiers are trained with the twelve-dimensional feature
vector, as presented in (4).

f eature = (mean p
x , mean p

y , mean p
z , var p

x , var p
y , var p

z ,

meanw
x , meanw

y , meanw
z , varw

x , varw
y , varw

z ) (4)

where mean p
x , meanw

x are the mean value for x axis from phone
and watch, var p

x , varw
x are the variance for x axis from phone

and watch. In order to fuse the contextual information, SVM
classifier with probability outputs is trained. Probabilities of
13 activities given training data P(A = Walking|D), P(A =
Running|D), …, P(A = Washinghands|D) are generated.
For the body-fixed sample, it is possible that a sample belongs
to body-unfixed activities is close to zero and vice versa.

4.3 Contextual Fusion layer

The Contextual Fusion (CF) layer is designed to refine the output
of the SC layer by fusing contextual information, since there is
a certain relationship between activities and their environment.
A SVM and naïve Bayes fusion algorithm is proposed to use the
probability result generated in SC layer. Different from the naïve
Bayes algorithm, the fusion algorithm obtains the probability of
activity given sensor data P(A|D) from the results of SVM. In
this stage, a location list and a time list are defined, which record
several presetting locations and time periods. Each sample will
be given a location value and a time value within the location list
and time list. The time values are obtained by dividing one day
into several periods and the sample collection time is matched
into one of the periods, while the location values are obtained by
the proposed WiFi-assisted labeling method. The descriptions
of the two lists and the corresponding methods are as follows.

1) Open location list and the WiFi-assisted GPS labeling method.
Basically, five location labels (outdoors, dormitory, canteen, of-
fice, unknown indoors) are preset as the attributes in the initial

location list. The algorithm first assigns each collected sample a
GPS coordinate either from the GPS satellite when subject is out-
doors or from WiFi when indoors. To convert GPS coordinates
into location labels, a WiFi-assisted GPS labeling method which
marks the collected samples with location labels is proposed.

We first deal with the WiFi-assisted indoor locations. In our
case, WiFi network of three indoor locations is available, in-
cluding dormitory, canteen and office. We assumed that the
devices can connect to the known indoor network automatically.
Because the satellite signal cannot be acquired in these indoor
locations, the GPS coordinates can only be obtained from WiFi.
However, there may be some offsets in the GPS coordinates
caused by the WiFi network and it may changes every time
when reconnection occurs; therefore, circular areas are recorded
as the corresponding coordinates of these locations instead of
precise coordinates. The center coordinates of these circles are
updated constantly and calculated as the mean value of all the
previous center coordinates. Radius of the circle is 22 meters
which is slightly larger than the offsets obtained from measuring
the samples. Any GPS coordinates within the circular area are
considered as dormitory, office or canteen (Figure 3).

When the device accesses an unknown WiFi and gets a co-
ordinate out of any circular areas, the label unknown indoors is
given to the current sample. The sample also gets the unknown
indoors where no coordinates exists, indicating an unfamiliar
location without satellite signal or WiFi network. The labeling
method is illustrated in Figure 4.

It should be noted that the location list is open. Any place that
provides meaningful and relatively fixed location information
can be added to the list. More WiFi available indoor locations
such as coffee house or gymnasium can be considered. For the
outdoor cases, outdoor athletic fields and basketball court can be
added to enrich the contextual information.

2) Time list and the time labeling method. Similar to the loca-
tion list, six time periods (morning, forenoon, noon, afternoon,
evening, night) are defined in the time list (Table 3). The collec-
tion time is recorded when collecting data, then the algorithm
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Figure 2 Accelerometer data of the smartphone from eight activities (a-h).

will match the colleting time with the time list and assign the
sample corresponding time label. For example, if a sample is
collected at 15:23:20, then it would be labeled as afternoon.

Then the location and time probability matrices are calculated
by the training samples, which are described below.

3) Probability Table of Location (PToL). A probability table
formed by 13×4 probability values is generated from the training
samples. The element of this table noted as P(L|A) represents
the probability of different locations given a certain activity. Val-
ues of elements from each row add up to 1. It can be seen as
a prior experience obtained by analyzing the location label of
training samples.

4) Probability Table of Time (PToT). In common with the prob-
ability table of location, a probability table formed by 13 × 6
probability values is also obtained by the training samples. The
element P(T |A) of this table represents the probability of a time

period given a certain activity.
A naïve Bayes model illustrated in Figure 5 is used for fu-

sion. Three kinds of data including GPS coordinates, time, and
accelerometer data are fused in the model. The goal of the al-
gorithm is to obtain the recognition activity label A that has the
largest probability given training data D, time label T , location
label L. The equation is derived as follows.

Activi ty

= argmaxa∈A(P(A|D) × P(A|T ) × P(A|L))

= argmaxa∈A

(
P(A|D) × P(T |A) × P(A)

P(T )

× P(L|A) × P(A)

P(L)

)

= argmaxa∈A(P(A|D) × P(T |A) × P(A)

× P(L|A) × P(A)) (5)
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Figure 3 Circular areas recorded in location list.

 

Figure 4 WiFi-assisted GPS labeling method.

Table 3 Time list
Morning Forenoon Noon Afternoon Evening Night

Time Period 6:30–8:00 8:00–11:00 11:00–13:30 13:30–19:00 19:00–22:30 22:30–6:30

 

Figure 5 The naïve bayes model.
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where P(A) is a fixed value that can be obtained through the
training set. P(A|D) is the probability of activity given training
data, which is calculated by SVM classifier in SC layer. P(T |A)

and P(L|A) are the probability of time and location that is given
in CF layer.

5. EVALUATIONS

5.1 Data collection

As mentioned in Section 1,we utilized a smartwatch and a smart-
phone to collect data. The watch is Omate True Smart with
various sensors including a GPS sensor, a light sensor, a tri-
axial accelerometers, a gyroscopes, etc. The phone is Samsung
Galaxy mini, which is also embedded with these sensors. Both
of them are powered by Android system, the range of the tri-axial
accelerometers is ±2g and the sampling rate of it is set to 17Hz.

Ten subjects (Six males, four females) were involved in our
experiments. The ages of subjects are from 23 to 31. They
carried the smartphone in their right leg pants pocket and the
smartwatch on their left wrist, as shown in Figure 6. Both of
the two devices had installed the data collection application.
The two devices communicate with each other via Bluetooth
and the smartwatch is responsible for receiving the start and
end commands from subjects. Labels of collected data were
annotated manually. Data of each long duration activity process
between start and end command was transformed into 7-second
samples. For the short duration activities, the app on smartphone
and smartwatch only receive the start command and record the
first 7 seconds data each time. The 7-second data is used as
sample directly without further dividing.

5.2 Determination of thresholds for dividing
activity sets

In order to evaluate the effectiveness of the variance and the en-
ergy feature in distinguishing body-fixed set and body-unfixed
set, both thresholds of the two features need to be obtained by
measuring the misclassified numbers among 7536 samples. One
third of these samples (generating samples) are used to generate
the threshold while the rest (assessment samples) are used to as-
sess it. The sum of variance sumv of three axes is calculated for
each generating sample, along with the sum of energy sume. The
thres + v and threse are determined when the total number of
misclassified samples is minimum. With the growth of sumv or
sume, the number of misclassified samples in body-fixed set in-
creases while the number of body-unfixed set declines, as shown
in Figure 7.

Figure 7(a) shows that, though the curve is close to flat, the
number of misclassified reducing to the minimum 478 when the
sume is 13700. In contrast with the energy feature, there is only
13 (0.26%) misclassified samples at the lowest point among all
5024 assessment samples divided by variance when the sumv is
around 11, as shown in Figure 7(b). In conclusion, the variance
provides a simple and effective way to divide the two sets, which
is adopted as the dividing method in the BI layer.

5.3 Generation of PToT & PToL

We first divide all the samples into ten sets. In each validation
nine sets are utilized as training samples and the rest one as
testing samples. Probability table of time (PToT) and probability
table of location (PToL) are generated for each 10-fold cross-
validation. Table 4 and Table 5 present one of the validation’s
probabilities.

In the probability table of location, P(L|A) = 0 means the
activity A has never happened in this location. Take the eat-
ing as an example, subjects eat in the canteen in most cases
(a high probability of 0.894). Subjects may also have meals
in dormitory, office or unknown indoor places when they bring
them there. Subjects do not eat outdoors in these training sets,
thus P(Outdoors/Eating) = 0. In fact, for the indoors cases,
more WiFi networks could be recorded in the location list such
as convenience store and coffee shop to enrich the contextual
information.

Similar to the PToL, P(T |A) = 0 means the activity A has
never happened during the time period T . Take the sleeping
activity as an example, subjects sleep at night in most cases (a
high probability of 0.7111). Subjects may also take a rest at
noon when they finished the tiring work. They may sleep late
on weekend morning. Thus noon and morning are the other
two periods that sleeping happens. Subjects do not sleep in the
rest periods in these training sets, thus other probabilities are
recorded as zero in the table.

5.4 Performance evaluation of the context-
aware hierarchical method

Performance of the context-aware hierarchical method was es-
timated using 10-fold cross-validation. The result is shown in
Table 6, along with the confusion matrix in Figure 8. The pro-
posed method achieves good results in both body-fixed activity
set and body-unfixed activity set. Red frames in the confusion
matrix represent the intersection of the two activity sets that di-
vided in BI layer. It is verified that most samples in one of the two
sets will not confused with samples in the other set. Then for the
body-fixed activities, the smartwatch plays an important role be-
cause the accelerometer data from watch provide enough details
for classifying activities involving hands. For the body-unfixed
part, these activities show obvious characters in variance and
mean of accelerometers. Moreover, for some contextual activity
such as eating and sleeping, the contextual information improves
the performance. However, the result of washing hands is not
very good. It is possible that this activity has a similar mean and
variance with other activities and it is confused with brushing
since they may both occur at the dormitory in the morning.

5.5 Comparison between hierarchical method
and single level method

To compare the hierarchical method with the single level one, to-
tally three SVM classifiers are trained for body-fixed set, body-
unfixed set, and the whole activity set respectively. All SVM
classifiers use RBF kernel function. The performances of three
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Figure 6 Data collection devices.

 
(a)                                                                            (b) 

Figure 7 Number of misclassified samples.

Table 4 Probability Table of Location (PToL).

Unknown Indoors Outdoors Dormitory Office Canteen
Running 0.000 1.000 0.000 0.000 0.000
Ascending stairs 0.980 0.020 0.000 0.000 0.000
Descending stairs 0.970 0.030 0.000 0.000 0.000
Walking 0.092 0.849 0.019 0.008 0.032
Eating 0.007 0.000 0.081 0.018 0.894
Typing 0.011 0.000 0.108 0.882 0.000
Drinking 0.002 0.054 0.181 0.366 0.398
Waving hands 0.040 0.590 0.145 0.132 0.093
Reading 0.000 0.000 0.327 0.673 0.000
Stretching 0.000 0.000 0.655 0.345 0.000
Brushing teeth 0.000 0.000 1.000 0.000 0.000
Sleeping 0.000 0.000 1.000 0.000 0.000
Washing hands 0.062 0.000 0.875 0.000 0.063

classifiers were estimated using 10-fold cross-validation. The
F1-measure of single level classifier is 0.904 on average. The re-
sult of classifier for body-fixed set is 0.942, and the body-unfixed
set is 0.918, which are both higher than 0.904. We then use the
proposed hierarchical method, the F1-measure of which is 0.937
for the overall samples including all activities, improving the av-
erage F1-measure by 0.033. This can be explained that the BI

layer divided the body-fixed set and body-unfixed set effectively
(only 0.26% of all samples) and there are few misclassified sam-
ples in the crossed area. The results are illustrated in Figure 9.
The F1-measure of most activities are close, and some activities,
like running (0.251↑) and brushing (0.090↑), are improved sig-
nificantly. Although some activities F1-measure declined, it is
not obvious (Drinking 0.005↓).
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Table 5 Probability Table of Time (PToT).

Morning Forenoon Noon Afternoon Evening Night
Running 0.2517 0.0000 0.0000 0.4204 0.3279 0.0000
Ascending stairs 0.0000 0.3713 0.3431 0.2856 0.0000 0.0000
Descending stairs 0.3213 0.0000 0.3212 0.3575 0.0000 0.0000
Walking 0.1229 0.1890 0.1960 0.3100 0.1821 0.0000
Eating 0.2815 0.0290 0.3314 0.0372 0.3209 0.0000
Typing 0.0000 0.4542 0.0000 0.4598 0.0860 0.0000
Drinking 0.1015 0.2480 0.2217 0.2293 0.1995 0.0000
Waving hands 0.2792 0.1672 0.2824 0.2475 0.0237 0.0000
Reading 0.0000 0.3972 0.0000 0.4502 0.1526 0.0000
Stretching 0.4051 0.1316 0.3112 0.0920 0.0601 0.0000
Brushing teeth 0.4612 0.0000 0.0562 0.0000 0.4692 0.0134
Sleeping 0.0786 0.0000 0.2103 0.0000 0.0000 0.7111
Washing hands 0.2857 0.0539 0.3008 0.0542 0.2810 0.0271

 

Figure 8 Confusion matrix of proposed method.

Table 6 Result of proposed methods.

Activity Abbreviation Recall Precision F1
Eating ET 98.11% 99.24% 0.987
Typing TP 98.43% 100.00% 0.992
Drinking DK 95.32% 98.50% 0.969
Waving hands WH 95.71% 100.00% 0.978
Reading RD 99.44% 100.00% 0.997
Stretching ST 93.98% 100.00% 0.969
Brushing teeth BT 88.28% 100.00% 0.938
Sleeping SP 100.00% 100.00% 1.000
Washing hands WS 100.00% 73.13% 0.845
Walking WK 90.94% 99.21% 0.949
Running RN 100.00% 91.02% 0.953
Ascending stairs AS 92.86% 96.30% 0.945
Descending stairs DS 100.00% 97.14% 0.985
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Figure 9 F1-measurement results before and after dividing.

5.6 Comparison between Smartphone Only
and Smartphone with Smart Watch

The smartwatch plays an important role in recognizing all 13
activities. To illustrate it more intuitively, SVM classifiers with
and without data from the watch are tested. Both of the two
classifiers uses hierarchical scheme during their training pro-
cess. The performances of them were estimated using 10-fold
cross-validation. The results are shown in Figure 10. The over-
all F1-measure of method without smartwatch is 0.763, while
the one with watch is 0.937, which is improved by 0.174. The
data from smartwatch has small effect on some body-unfixed ac-
tivities such as walking, ascending and descending, because the
phone in pants pocket provides enough information in recogniz-
ing these activities. But for the body-fixed activities, like drink-
ing, stretching, waving hands, the performance are improved
significantly with the help of the smartwatch. Since the smart-
watch capture additional movement data from hand, many hand-
involved activities could be recognized.

5.7 Performance evaluation of contextual infor-
mation fusion

In the final stage, the contextual information in CF layer is fused
for classifiers. The performance of classifier was also estimated
using 10-fold cross-validation. The result is illustrated in Figure
11. On the basis of the SC layer, the CF layer further increases
the average F1-measure by 0.027.

As can be seen from the Figure 11, the CF layer performs well
on those activities that have distinct contexts. Washing hands
and ascending stairs activities are the top two that benefit most
from the CF layer. This is because subjects usually washing
hands in dormitory within a certain time period. Ascending
stairs occur in the building in most cases, with the location label
unknown indoors, which helps distinguishing them from running
that occur outdoors. Beside these two activities, performances
of most of the rest activities are improved in CF layer.

Through the test samples, we found that the contextual infor-
mation did not help to reclassify the walking samples correctly.

The walking samples are confused with outdoor running and in-
door ascending due to the lower location probability of indoor
walking. Moreover, the walking samples do not take any advan-
tage by the time label, for example, both walking and running
may happen at any daytime.

6. COMPARISON BETWEEN THE PRO-
POSED METHOD AND EXISTING
METHODS

Finally, we compared the proposed method with other classifi-
cation methods including Neural Network, C4.5 Decision Tree
and Support Vector Machine.

For the Neural Network and Decision Tree, the correspond-
ing hierarchical classifier and the hierarchical classifier fusing
time and location are also tested to verify the effectiveness of
the hierarchical scheme and the contextual information. It can
be seen that the hierarchical scheme fusing contextual informa-
tion are effective for both Neural Network classifier and C4.5
Decision Tree. Through this method, the F1 value of the hierar-
chical Neural Network fusing contextual information is 0.954,
improving 0.146 comparing with the single-layer Neural Net-
work. Then, the F1 value of the hierarchical C4.5 Decision Tree
fusing contextual information is 0.945, improving 0.044 com-
paring with the single-layer C4.5 Decision Tree. For the Support
Vector Machine, three methods are tested, including single-layer
SVM classifier, SVM fusing time only, and SVM classifier fus-
ing location only. All the results are illustrated in Table 7. It
is demonstrated that the proposed hierarchical scheme fusing
contextual information is effective for all the evaluated methods
(Neural Network, C4.5 Decision Tree, Support Vector Machine),
and the hierarchical SVM fusing contextual information method
performs best among them.

7. CONCLUSIONS

In this paper, a context-aware hierarchical approach is proposed
to recognize 13 elementary activities only with a wearable watch
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Figure 10 F1-measurement results with and without smartwatch.

Figure 11 F1-measurement results before and after fusing contextual information.

Table 7 Performance comparison of NN, C4.5 DT, SVM and the proposed method.

Algorithms Recall Precision F1
Neural Network 83.05% 78.74% 0.808
Hierarchical Neural Network 91.17% 92.36% 0.918
Hierarchical NN Fusing Time and Location 95.46% 95.37% 0.954
C4.5 Decision Tree 89.91% 90.25% 0.901
Hierarchical C4.5 Decision Tree 89.85% 89.56% 0.897
Hierarchical DT Fusing Time and Location 94.71% 94.26% 0.945
Support Vector Machine 88.98% 91.82% 0.904
Hierarchical SVM Fusing Time 91.12% 94.41% 0.927
Hierarchical SVM Fusing Location 94.68% 95.92% 0.953
Proposed Method 96.42% 96.47% 0.964

and a smartphone. The proposed approach first divides activities
into two parts according to the intensity of activities, and each
part is classified respectively. Furthermore, a WiFi-assisted GPS
labeling method and a time labeling method are proposed to uti-
lize contextual information, and a naÃ¯ve Bayes model is pre-
sented for the fusion. The WiFi-assisted GPS labeling method
utilized WiFi positioning to deal with the known indoors location

such as dormitory, canteen and office. A lot of comparative ex-
periments are designed and conducted to evaluate the proposed
method. First, dividing activity sets is a good way to deal with
a variety of activities, because it improves the accuracy of each
activity. And the experiment results show that the sum of three-
axis variance provides a simple but effective method. Second,
the smartwatch is helpful in recognizing some body-fixed activi-
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ties because the introduction of the hand movement data. Third,
contextual information including location and time is useful to
refine the output of SVM.

Our work provides a new method for fusing contextual in-
formation into activity recognition. We are considering several
directions for future work. One of them is extending the contex-
tual information by exploring more sensors in mobile devices.
For example, the microphone could be used to perceive occasions
of activities by analyzing the current noise, and the velocity pro-
vided by the GPS could be used to determine whether the subject
is in a car. With the integration of more multimodal context data,
a complete contextual fusion framework can be built for Android
devices, thus more complex activities or human behaviors, such
as playing basketball or giving a lecture, will be recognized.
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