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Majority of the MapReduce-Hadoop based spatial indexes are based on either non-disjoint decomposition or the data-dependent disjoint decom-
position of space. Quadtree index based regular disjoint decomposition in MapReduce takes different forms of spatial data as point data. Lines,
curves, polygons and other higher dimensional data are transformed to point data through a mapping process. Though, the mapping makes
index-building quite easy, but it is not suitable for answering search queries. This paper proposes H-bucket PMR Quadtree, a parallel implementation
of the existing bucket-PMR Quadtree to handle curvilinear or polygonal map data, in MapReduce. The proposed index uses a two-level of indexing:
a global index that indexes the decomposed dataset among cluster nodes to support parallel index building and a local bucket-PMR Quadtree
index maintained by each participating cluster node. The proposed index is compared with the state-of-the-art MapReduce based R+-tree indexing
and the default key-value storage (non-indexed) Hadoop towards index build-time and spatial queries, such as line search and range search queries.
The experimental results demonstrate the effectiveness of the proposed index in MapReduce environment
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1. INTRODUCTION

It has become very important to design high performancequeries
on spatial data, as the data is voluminous by its internal charac-
teristics, high computational complexity involved in processing
and considerable time taken by complex spatial queries. In ear-
lier times, parallelization was limited to storage of data on par-
allel disks rather than parallel computing using multiple proces-
sors. There has been a lot of research on data-parallel construc-
tion of spatial index algorithms on different parallel platforms.
The hardware architecture containing single processor and mul-
tiple disks is used (Kamel & Faloutsos 1992). It made query
search fast, but it did not parallelize bulk-loading of indexes.
In (Papadopoulos & Manolopoulos 2003), authors enhanced the
architecture of (Kamel & Faloutsos 1992) by considering par-
allel bulk-loading with multiple processors, in addition to the
existing multiple disks. Other multiple processor variants op-
timized partitioning of input data space for bulk-loading using
algorithms, such as Hilbert packing. (Schnitzer & Leutenegger

1999). The SAM (Scan-And-Monotonic-mapping) architecture
of parallel computation used a linearly ordered set of proces-
sors for performing element-wise and scan-wise operations in
parallel (Bestul 1992).

MapReduce has been proven very efficient for solving prob-
lems involving huge datasets of semi-structured characteristic.
However, a lot of researches have been proposed for optimiz-
ing the MapReduce Hadoop. The performance of the Hadoop
cluster is optimized through improving fault tolerance. It is ac-
complished through predicting failures using the Markov pro-
cess in the MapReduce programming framework (Zheng et al.
2016). The MapReduce-Hadoop framework has shown opti-
mized query performancewhen input dataset is indexed (Dean &
Ghemawat 2013; Singh & Bawa 2017; McCreadie et al. 2012).
It is only the last few years that MapReduce model has been ex-
ploited in the field of spatial data to parallelize query execution
over huge dataset for improving query efficiency. An effective
indexing and searching with dimensionality reduction on high-
dimensional space is achieved through a two step transformation.
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Firstly, the high dimensonal data is represented as vectors and
secondly, mapping feature vectors in multi-dimensional space
into vectors in low-dimensional space. Finally, vecotrs in low-
dimensional space are indexed for information retrieval (Jeong
et al. 2016). The accuracy of outputs generated for processed
spatial data in the Hadoop is similar to that generated using GIS
software ArcGIS Singh & Bawa 2016). Until recently, most of
the MapReduce oriented researches on spatial indexes are based
on non-disjoint decomposition or irregular disjoint decomposi-
tion, such as R-tree and variants (Xun & Wenfeng 2013; Eldawy
& Mokbel 2013; Wang & Weng 2010; Achakeev et al. 2012;
Cary et al. 2010; Liu et al. 2009; Zhang et al. 2012; Tan et al.
2000; Liao et al. 2010). The major drawback of non-disjoint de-
composition methods is that object may be spatially contained in
more than one bounding rectangle, yet it is only associated with
one bounding rectangle. A spatial query may require searching
many bounding rectangles in search of an object. In the worst
case, whole database or all bounding rectangles would need to
be searched. The non-disjoint decomposition data structures
suffer from a high load time of structure, poor tree structure
and poor search time, but these provide good storage utilization.
On the other hand disjoint decomposition methods require more
storage, but these reduce search time considerably. The perfor-
mance of quadtree and variant indexes, for spatial index building
and query processing, is well established (Bestul 1992; Hoel &
Samet 1994b; Hoel & Samet 2003; Hoel & Samet 1994a; Hoel
& Samet 1992; Jun et al. 2014). The disjoint decomposition
causes sub-objects obtained from main object to be associated
with different cells. This causes a little problem when the area
covered by an object is calculated, because it forces the area
calculation for all the cells to which the object is associated.
R+-Tree (Wang & Weng 2010), the Quadtree (Samet 1990) and
Grid file (Nievergelt et al. 1984) are examples of data struc-
tures that follow disjoint decomposition approach. R+-tree is
a variant of R-tree that allows disjoint decomposition of space
by not allowing overlapping among intermediate nodes. It leads
to a good improvement in search time but requires more storage
as compared to R-tree and R∗-tree. The drawback of R+-tree
is that decomposition is data-dependent, which makes it diffi-
cult to perform some tasks that require composition of different
operations and data sets.

In contrast, Grid file index and quadtree data structures have
a greater degree of data-independence. Grid file uniformly de-
composes grid space into blocks of uniform size with use of a
multidimensional hash algorithm (Nievergelt et al. 1984). The
spatial dataset is mapped onto a grid of uniform sized cells and
accessed through an indexed grid file. A grid file consisted of
one dimensional array that provides a mapping from spatial lo-
cation to grid directory. Each directory within n-dimensional
grid directory points to a specific dataset. Though, this method
has a simple structure, but it also has a high disk I/O time. Two
disk accesses are required for data retrieval. First disk access ob-
tains directory entry and the second accesses the required data.
Besides a high disk I/O time, the grid file is more suitable for
representing uniformly distributed data. In general, the spatial
data is not uniformly distributed, so, a more flexible quadtree
data structure that suits to non-uniformly distributed data is pro-
posed in this paper. A specific quadtree index for curvilinear
data, the bucket-PMR Quadtree index, has been considered for
parallelizing in MapReduce.

The rest of the paper is organized as follows. Section 2 de-
scribes related work and motivation. Section 3 describes back-
ground of data structures used in the paper in MapReduce. Sec-
tion 4 describes the design of proposed H-bucket PMR Quadtree
index and search queries in MapReduce. Section 5 describes
the implementation and discusses experimental results obtained.
Section 6 presents conclusions and future scope of the presented
work.

2. RELATED WORK

The regular disjoint decomposition using quadtree have more
potential for inter-processor communication or in other words
for parallelism. However, not much work is available that uses
quadtree-based spatial data structure in MapReduce. One such
approach uses quadtree-based global index and Hilbert-curve
based local index (Zhong et al. 2012). The global index searches
data blocks and Hilbert index locates spatial objects for efficient
data retrieval. The use of quadtree based indexes for building a
local index in MapReduce is proposed (Jun et al. 2014). The
authors proposed a HQ-Tree index in Hadoop that considers PR-
Quadtree index for spatial point objects. It solves issues of order
of data insertion and space overlap in non-disjoint decomposition
approaches. It improved execution time performance for index
creation and, point and range query, for parameters data size,
node size and number of query target points. However, the HQ-
Tree approach is limited to spatial point objects.

Among many quadtree based data structures for indexing and
querying, the PMR Quadtree is found to be the best for repre-
senting the curvilinear data (Samet 1990). In the domain of tra-
ditional serial programming models, PMR Quadtree index based
data structure has been proven better for spatial join queries (Hoel
& Samet 1995a) and line segment queries (Hoel & Samet 1992)
over the R-Tree (Antonin Guttman 1984), R∗-tree (Beckman et
al. 1990) and R+-tree (Sellis et al. 1987). However, motive
of the concerned researches has always been on reducing build-
time and query execution time. Efforts had been made in the
past for implementing existing serial spatial indexes on paral-
lel platforms. One such effort has used hypercube architecture,
Scan-And-Monotonic-mapping (SAM) model of parallel com-
putation (Bestul 1992), for spatial data structure indexing and
querying (Hoel & Samet 1994b; Hoel & Samet 2003; Hoel &
Samet 1994a). The hypercube architecture is a tightly coupled
architecture that is characterized by 2n processors interconnected
as n-dimensional binary cube (Hayes & Mudge 1989). A scan
operation (Blelloch & Little 1994), comprising of primitive op-
erations (Hoel & Samet 1995b)-element-wise, permutation and
scan, operates on long vectors of data. In one such comparative
study on the SAM model, PMR Quadtree is found to be slightly
faster than R-tree and much better than R+-tree for similar tree
node capacities (the capacity to hold the number of spatial ob-
jects by a node of tree) for spatial join queries (Hoel & Samet
1994b; Hoel & Samet 1994a) and polygonization queries (Hoel
& Samet 2003).

However, MapReduce based parallel programming, the
Hadoop (Apache 2015), provides a loosely coupled architec-
ture. The computing nodes can be added on the fly to provide
scalability, which is not possible in the SAM model. The pro-
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gramming by using Map and Reduce functions is quite easy in
MapReduce, as compared to the scan operations that operates
on long vectors of data. Other important things that favor use
of MapReduce model is its simplicity, ease of use and ability to
easily handle large datasets. Besides all these factors, fault toler-
ance in MapReduce model and the property of abstracting paral-
lelization from user are reasons that have motivated researchers
to use it. It provides good performance through scaling out to
computing clusters.

The ability of bucket-PMR quadtree index to efficiently handle
the curvilinear data for indexing and querying, and advantages
of the Hadoop parallel processing framework have motivated
us to carry out this work. This paper proposes and implements
H-bucket PMR Quadtree index, a data-parallel version of the
bucket-PMR quadtree index in the Hadoop, where the letter “H”
stands for the Hadoop.

3. BACKGROUND: SPATIAL INDEXES
USED IN MAPREDUCE

The Hadoop is an open source implementation of MapReduce
parallel programming model. It programs logic through map-
and-reduce functions in a Master-Slave Hadoop architecture that
handles input-output in key-value pair. The model parallelizes
processing by partitioning input dataset on the distributed file
system of the cluster of computing nodes. Each node processes
part of its task and returns result to master node. In this section,
a brief description of two existing disjoint decomposition data
structures: bucket-PMR quadtree and R+-tree is presented, that
follows its implementation in MapReduce. The purpose is to
compare build-time and query execution time of state-of-the-art
MapReduce-based R+-tree and H-bucket PMR Quadtree.

3.1 Overview of bucket-PMR Quadtree

The detailed process of inserting line segments in PMR (Polyg-
onal Map Random) quadtree is described in (Nelson & Samet
1986). The line segments are inserted into PMR quadtree, start-
ing with inserting first line segment into an empty block. A block
is split into four quadrants of equal sizes until object count in
each block reaches a threshold value. The splitting threshold is
a permissible number of line segments in a block. A new line
segment is inserted into a block, if it intersects a block, and the
block is checked for the splitting threshold. A block is split into
sub-blocks only once, as it contains a few very close lines. It is
important to keep particular value of splitting threshold, as too
small value causes many subdivisions that lead to many empty
sub-blocks and hence increased storage requirement. A large
value of splitting threshold causes a decreased construction time
and storage requirement but at the same time it increases the
time for performing operations on it. The order of inserted line
segments decides shape of the resulting PMR quadtree.

However, in parallel construction of PMR quadtree, insertion
ordering of line segments is not known, as lines are inserted si-
multaneously in parallel and therefore a slight modification to
PMR quadtree, known as a bucket-PMR quadtree is used. The
tree data structures generally access data from primary memory

and pointers are used to access data stored in pages of secondary
memory, however, it gives rise to page faults. The bucketing
method overcomes this problem by collecting data objects into
sets called buckets, and providing access to buckets through
appropriate address computation mechanism. In bucket-PMR
quadtree, a block or bucket is split repeatedly until a splitting
threshold is reached, unlike in the PMR quadtree, which allows
splitting a block only once. The splitting threshold of a bucket
is also represented as node capacity of a tree node. The node
capacity of a data structure tree node is the data holding capacity
of a node in terms of size of data in a tree. It decides the num-
ber of objects in a bounding rectangle. The objects are grouped
according to their proximity for better results.

3.2 Conceptual view of the H-bucket PMR
Quadtree in MapReduce

The conceptual idea of creating a bucket-PMR Quadtree index in
MapReduce is presented in Figure 1. The Figure 1(a) shows the
input polygonal map dataset of 11 line objects. The dataset is par-
titioned as per the block size over Hadoop Distributed File Sys-
tem (HDFS), and required number of mappers use Algorithm-1
to split line objects into different quadrants. The line objects
from same quadrant are output to a reduce function, as shown
in the Figure 1(b) that starts the index building process as per
Algorithm-2.

A bucket size of three is assumed here. It means only three line
objects can be accommodated in the proposed tree node. Each
Reduce node checks the number of line objects it has received
from the mapper. If the count is less than or equal to three
then all line objects are assigned to the node and the node gets
the status of a leaf node (L). Otherwise, the node is vacated with
status changed to internal node (IN) and all entries of the node are
given to four newly created child nodes as per the MBR intersect
condition of Algorithm-2. This process is repeated until all nodes
are filled-up with at most three line objects or there are no more
objects for insertion. The process on completion creates an H-
bucket PMR Quadtree, as shown in Figure 1(c), and its logical
counterpart is shown in Figure 1(d).

3.3 Conceptual view of R+-Tree in MapReduce

R+-tree is a variant of R-tree that allows disjoint decomposition
of space by not allowing overlapping among intermediate nodes.
It leads to a good improvement in search time, but requires more
storage as compared to R-tree and R∗-tree. The drawback of R+-
tree is that the decomposition is data-dependent, which makes it
difficult to perform some tasks that require composition of dif-
ferent operations and datasets. A recursive top-down approach
is used to insert a line segment into an R+-tree that places it into
every leaf node that it intersects (Hoel & Samet 1992). If a leaf
node in which a line segment is inserted overflows, then the leaf
node is split. The split approach minimizes the total number of
resulting portions of line segments. To fulfill this requirement,
all possible vertical and horizontal split lines are considered,
and for each split line, the number of intersected line segments
is counted. Finally, a split line having a minimum number of
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Figure 1 The Conceptual View of the H-bucket PMR Quadtree in MapReduce (a) Input spatial line data to MapReduce (b) Map function in MapReduce assigns the
decomposed input spatial line objects into four quadrants (c) Data in the quadrants recursively filled-up in a bucket-PMR Quadtree nodes for a bucket size=3 (d) Logical
structure of the MapReduce constructed H-bucket PMR Quadtree for bucket size=3.

Figure 2 Conceptual View of R+-Tree Index in MapReduce (a) The spatial area representative of the bounding rectangle (b) Corresponding R+-Tree for the collection
of line segments.

intersections is taken, and the splits are propagated up the tree.
For an input spatial line dataset shown in Figure 1(a), there

can be many spatial representations of the extents of bounding
rectangles. One such representation of bounding rectangles is
presented in Figure 2(a) and the corresponding R+-Tree is shown
in Figure 2(b). The structure of R+-Tree of order (m, M) is
such that all intermediate nodes and leaf nodes contain between
m <= (M/2) and M entries. However, it is not guaranteed
until a complicated record insertion and deletion procedure is
followed. The root node has at least two entries, if it is not a leaf
node.

The procedure for building R+-tree of the Figure 2(a) is de-
scribed here. Initially, root node consists of R1 and R2 rectan-
gles. R1 contains line segments a,b,h,i,j,c and R2 contains line

segments c,d,e,f,g,k. Notice that the line segment c is replicated
in both the rectangles. The number of entries is much greater than
permissible range, so rectangles R1 and R2 are further divided
into rectangles R3, R4 and R5, R6 respectively. Now, rectan-
gle R3 contains entries a,b,h and rectangle R4 contains entries
c,b,i,j. The line segment b is replicated in both sub-rectangles.
Similarly, rectangle R5 contains entries c,d,e and rectangle R6
contains entries f,g,k. R+-tree has been investigated over many
parallel models such as SAM (Hoel & Samet 1994b; Hoel &
Samet 1994a; Sellis et al. 1987) and MapReduce (Zhong et
al. 2012). R+-tree implementation in MapReduce (Zhong et
al. 2012) is considered here for studying index build-time and
spatial query execution time.
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4. DESIGN OF H-BUCKET PMR
QUADTREE IN MAPREDUCE

This section presents H-bucket PMR quadtree in MapReduce.
Firstly, data partitioning into four quadrants in MapReduce is
carried out, for parallel construction of proposed index. Sec-
ondly, tree node structure and bulk-loading of the proposed in-
dex is discussed. Thirdly, design of two spatial queries, line and
range query, is described on the proposed index.

4.1 Proposed Parallel H-bucket PMR Quadtree
Index in MapReduce

The split of spatial dataset depends on the size of the data block
in HDFS. If the block size is b and spatial dataset is of size s,
then n = s/b splits are created and each split is taken care of by
one mapper. Each Mapper runs Algorithm-1 and segregate line
objects in one of the quadrants. For each row of spatial data in
the input (Comma Separated Value) CSV file, each map function
checks in parallel both ends of line coordinates for insertion
in four quadrants. For deciding the space of four quadrants,
two variables xmid and ymid are computed on the basis of the
minimum and maximum values for x and y coordinates from the
whole spatial data. For each line having start and end coordinates
((lx-min, ly-min),(lx-mx, ly-max)), Each mapper function puts
the line in one of the four quadrants through finding out lx-min
and lx-max against the x-mid, and ly-min and ly-max against
the y-mid. Two cases arise when lines are compared against
xmid and ymid values: (a) lines do not intersect xmid and ymid
coordinates and completely falls into one of the four quadrants.
(b) lines intersect xmid and ymid coordinates and are put in both
the quadrants. The output of Map function for a particular line is
(id of the quadrant, line (line-id and MBR)). All lines common to
a quadrant become input to the reducer with (id of the quadrant,
list(line)). Now, the H-bucket PMR Quadtree index is created
for all the lines in a particular quadrant. The generated H-bucket
PMR Quadtree index from each reducer is merged outside the
reduce function in a serial way to get the complete H-bucket
PMR Quadtree index.

Algorithm-1: Parallel H-bucket PMR quadtree index in MapRe-
duce

INPUT Lines: set of spatial lines.
OUTPUT: H-bucket PMR Quadtree index.
Step1: for each line object ((lx-min, ly-min),(lx-max, ly-max))

if (((lx-min && lx-max)<x-mid) && ((ly-min && ly-max)>y-mid))
then put line in 1st quadrant.

end if
if (((lx-min && lx-max)>x-mid) && ((ly-min && ly-max)<y-mid))

then put line in 2nd quadrant.
end if
if (((lx-min && lx-max)<x-mid) && ((ly-min && ly-max)<y-mid))

then put line in 3rd quadrant.
end if
if (((lx-min && lx-max)>x-mid) && ((ly-min && ly-max)>y-mid))

then put line in 4th quadrant.
end if
if (lx-min<x-mid<lx-max)

then include line in both the quadrants.
end if

if (ly-min<y-mid<ly-max)
then include line in both the quadrants.

end if
emit (id of the quadrant, line (line-id and MBR))

end for
Step2: H-bucket PMR Quadtree index is created by a reducer function
with input (id of the quadrant, list (line)) for each quadrant according
to Algorithm-2.
Step3: Set path for input and output directories, and then start up
MapReduce.
Step4: A merge process in Hadoop combines all child indexes.

4.2 Data structure of H-bucket PMR Quadtree
index node

The node structure of H-bucket PMR Quadree index is
represented with a class BucketPMRQTreeNode that con-
tains six elements: level-level of BucketPMRQuadTree
node, the level describes stage of recursive decomposition;
maxLevel-maximum permissible level defined for BucketPM-
RQuadTreeNode; BucketCapacity-maximum number of lines
objects that can be kept in a tree node; Minimum Bounding
Rectangle (MBR)-area of rectangular quadrant in which lines lie
in the form of ((xmin, ymin),(xmax, ymax)), childNodes-an ar-
ray of type BucketPMRQTreeNode; and SpatialData Collection-
contains line objects implemented with Collection structure in
Java that can store line objects but not more than BucketCapacity.
A class Box is presented separately just to simply presentation
of tree node structure. It specifies a rectangular region enclosed
by MBR.

Class BucketPMRQTreeNode
{

Int level; // level of this node
Int maxLevel; // maximum number of levels of quadtree;
Int BucketCapacity;
Box MBR;
BucketPMRQTreeNode childNodes[];
SpatialDataCollection data;

}

Class Box
{

Double xmin,ymin;
Double xmax, ymax;

}

Public class SpatialDataCollection{
ArrayList<BucketPMRQTreeNode> items= new ArrayList<
BucketPMRQTreeNode >();}

4.3 Algorithm for data insertion in H-bucket
PMR Quadtree Index

Input to the reducer as described in sub-section 4.1, (id of the
quadrant, list(line, and the MBR to which it belongs)), creates a
local H-bucket PMR Quadtree index for all line objects falling
in this quadrant as per Algorithm-2.
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Algorithm-2: Bulk-loading H-bucket PMR Quadtree index

Input: spatial data
Output: A local H-bucket PMR Quadtree:
Step1: Get spatial data to be inserted in H-bucket PMR Quadtree.
Step2: Check spatial data against quadrant MBR and perform step3 if
it intersects the MBR.
Step3: Check BucketPMRQTreeNode for a leaf/non-leaf node of H-
bucket PMR Quadtree index.
if Isleaf=true then
perform step 4 otherwise goto step 7.
end if
Step4: Add this spatial data item to ArrayList Collection.
Step5: After Inserting spatial data in ArrayList Collection, check for
maximum level reached or the number of data items that exceed bucket
capacity. If either one holds true, then split node into four child nodes
and increase level by 1 and vacate ArrayList Collection into a child
node’s ArrayList Collection as per step 6.
Step6: Repeat steps 2, 3, and 4. Clear parent node’s ArrayList Collec-
tion and set
Isleaf=false.
Step7: Repeat steps 2 to 6 for each child node in the H-bucket PMR
Quadtree.

4.4 Spatial queries in H-bucket PMR Quadtree
index

The efficiency of the proposed index is demonstrated through
implementing and executing spatial queries, such as line search
and range search, on the proposed index. The query algoritms
in MapReduce are as follows:

4.4.1 Line search query

The line search query returns true for input line objects to be
searched when search process finds a line object in the in-
dex. Algorithm-3 splits input lines spatial data and then passes
the split data (line_id coodinates((xmin,ymin), xmax,ymax)))
to map function. The map function carries out line search using
conventional PMR Quadtree line search algorithm (Samet 1990).
The reduce function counts the total number of line objects.

Algorithm-3: Line search query

Input: set of spatial lines
Output: the boolean value true for line which are found in the index.
Step1: A set of lines is partitioned into splits and input to the program.
Step2: In a Map function, the line search query is implemented. For
a particular (line(xmin.ymin),(xmax,ymax)), the function returns 1 if
found, otherwise returns −1.
Step3: In a reduce function, input from the map function is
(Found,list(identifiers of existing lines). Count the number of lines
that is found and output result onto HDFS.
Step4: Set path of input and output directories, and then start up MapRe-
duce.

4.4.2 Range search query

Algorithm-4 finds out all line objects that intersects or lies in a
particular input range or region. Firstly, it finds index space that
intersects with or includes query range and then, Map function
passes the index root node of the sub-tree for Reduce function.
The Reduce function computes all line objects which overlap

with query range and merge the result to form overall query
result.

Algorithm-4: Range search query

Input: MBR of the query range.
Output: Line objects.
Step1: Split region into several parts.
Step2: For overlapped area of the split part of region and index space,
Map function outputs (index, split part of the region).
Step3: Reduce function executes range query in index space provide
by Map function as input to Reduce function.
Step4: Set path of input and output directories, and then start up MapRe-
duce.
Step5: Merge outputs of split parts of the region, and return the whole
result.

5. RESULTS AND DISCUSSIONS

This section starts with an introduction to experimental setup,
configuration and dataset used in experimental analysis, and
presents results for comparing H-bucket PMR Quadtree index,
Haddop based R+-tree index and non-indexed-Hadoop with re-
spect to various parameters. Non-indexed Hadoop is the default
key-value storage provided by the Hadoop that does not use any
built-in indexing mechanism. It simply takes input dataset on
the HDFS and searches the dataset for queries.

5.1 Experimental setup, configuration and
dataset used

A Hadoop cluster over 10 computing nodes consists of one com-
puting node as Master node and the rest nine, act as slaves
in master-slave cluster configuration. The configuration of all
computing nodes is same except for a minor difference. The
master node that is equipped with 2 GB RAM and the rest of
computing nodes has following configuration: Dual Core @ 2.1
GHz processor, 1 GB RAM, Ubuntu 11.04 operating system,
Java-6-openjdk, and Hadoop-0.21.0. The master node is con-
figured with IP address 192.168.10.11 with a hostname Master
and slave nodes have IP addresses in the range 192.168.10.12 to
192.168.10.20 with host names Slave-1 to Slave-9.

The road intersection data of five counties of California state
has been used from tiger/line dataset in the experimentation
(ESRI 2016). The following counties of the California state
have been considered: Fresno County, Sierra County, Santa Cruz
County, Lake County, and Butte County. A CSV form of polygo-
nal map data for each county is considered for building H-bucket
PMR Quadtree and R+-tree index in MapReduce, as described
earlier. Besides analyzing build-time, a number of test runs of
line and range search queries are conducted on the two indexes
and non-indexed-Hadoop for analyzing the execution time. The
parameters are observed for a large number of test runs on each
county dataset for obtaining better accuracy. The mean value
from these test runs is plotted for presenting the analysis.
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Figure 3 A comparison between MapReduce based R+-tree and H-bucket PMR Quadtree (a) Storage required (b) Number of disk accesses (c) Index build-time.
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Figure 4 Index build-time in MapReduce in varying node capacity of indexes (a) R+-tree (b) H-bucket PMR Quadtree, in various county datasets.

5.2 Cost of building indexes with respect to stor-
age, number of disk accesses and execution
time

The costs of building indexes with respect to parameter stor-
age, number of disk accesses and execution time are analyzed
on a cluster of ten computing nodes. A set of 30 experiments
was conducted for result analysis, three experiments for each in-
dex (R+-tree and H-bucket PMR Quadtree) and for each county
dataset (five counties). Figure 3(a–c) shows the storage require-
ment of the MapReduce implemented R+-tree and H-bucket

PMR Quadtree. Both are almost similar, but the latter is slightly
better than the former. The disk access time of H-bucket PMR
Quadtree is also almost similar to R+-tree, but the former takes
a slightly less number of disk accesses as compared to the lat-
ter for all polygon maps. However, index building time of the
former was found to be significantly smaller as compared to
the latter, and the former takes approximately 20–50% less time
than the latter. It is due to regular disjoint decomposition in case
of bucket-PMR Quadtree, as the decision to split an overflowing
node effectively requires only two candidate split axis/coordinate
pairs. R+-tree requires testing a possibly large number of split
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Figure 5 Index build-time in MapReduce in varying node capacity of indexes R+-tree and H-bucket PMR Quadtree Index (a) Fresno County (b) Sierra County (c)
Santa Cruz County (d) Lake County (e) Butte County.

axis/coordinate pairs in determining a locally optimal node split.
This node split is an iterative work that depends on population
of objects in a tree node. A large number of clipping operations
are required before determining which part of line is associated
with the two nodes resulting from a split. While in case of bucket
PMR Quadtree, clipping operations are constant due to regular
disjoint decomposition of space.

5.3 Effect of tree node/bucket size on index-
building time

The bucket size or node capacity is the data holding capacity
of a tree node and is decided by the node size of an index tree.
It significantly impacts performance of queries. A set of 180
experiments was conducted, three experiments for each node
capacity (16KB, 32 KB, 64 KB, 128 KB, 256 KB and 512 KB),
for each index and for each of the five counties.

It is observed that index building time of H-bucket PMR
Quadtree and R+-tree index in MapReduce decreases with in-
creasing bucket size up to 64 KB. However, results in Figure
4(a-b) show that index building time decreases sharply for both
the indexes for a cluster size of 10 when the node size increases
gradually up to a limit. It is due to a reduced computation re-
quired for testing split/axis coordinate pairs with an increase in
node capacity, but this behavior persists till the size of data pack-
ets transfer in HDFS becomes 64 KB. When a tree node size
increases further and becomes larger than 64 KB, the number
of network transfers increases. For tree node sizes more than
128 KB, 256 KB and 512 KB, the number of network trans-
fers continue to grow. So, node size calibration is important
and setting it below 64 KB produces optimized query response
performance. Further, a comparison between the two indexes
in Figure 5(a-e) shows that index build time of H-bucket PMR

Quadtree is faster than a R+-tree in MapReduce by a factor of
1.39–2.01, 1.27–2.00, 1.31–2.36, 1.29–2.24, 1.21–2.26 in coun-
ties Fresno, Sierra, Santa Cruz, Lake and Butte, respectively. In
overall, H-bucket PMR Quadtree index build-time is faster than
R+-tree index build time in MapReduce by an average factor of
approximately 1.29–2.17.

5.4 Effect of cluster size on search queries exe-
cution time

A set of 450 experiments is conducted, three experiments for dif-
ferent sizes of cluster varying from 1 to 10 computing nodes and
for each county dataset, for a tree-node/bucket size of 64 KB.
The mean values are used to draw the graphs presented in Figure
6(a–e) and Figure 7(a–e) for line and range search queries, re-
spectively. The query search behaves just like a search operation
on a standalone system, when there is a single node in the clus-
ter. But on the addition of a second node in the cluster, search
time decreases slightly. On the addition of a third node, there
is a sharp decrease in the execution time. With the addition of
a fourth, fifth and sixth node, search time shows a continuous
decreasing trend. However, on the addition of a seventh, eighth,
ninth and tenth node, search time does not decrease further and it
remains almost constant. The slight decrease in execution time
when a second node is added is due to the increased shuffling of
intermediate data and files, which overcomes the performance
gain due to parallelism in the cluster. However, later on when
more nodes (up to six in number) are added, the effect of com-
putation due to cluster overweigh the shuffling of intermediate
data. But, later on there does not seem any change in execution
time when more nodes are added (from 7th to 10th node), it is
due to the size of data that is being considered is enough for
keeping busy six computing nodes. If, more nodes are added,
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Figure 6 Line search query execution time of the two indexes and non-indexed Hadoop (a) Fresno County (b) Sierra County (c) Santa Cruz County (d) Lake County
(e) Butte County.
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Figure 7 Range search query execution time of the two indexes and non-indexed Hadoop (a) Fresno County (b) Sierra County (c) Santa Cruz County (d) Lake County
(e) Butte County.

then these nodes sit idle and do not contribute in reducing ex-
ecution time. Figure 6(a–e) shows line search query execution
time for non-indexed-Hadoopand the two indexes. A significant
performance gain is observed for running queries once indexes
are established. A similar kind of observations is noticed for
range queries shown in Figure 7(a–e).

It is observed that H-bucket PMR Quadtree query execution

time is better by 1-4-1.9 times than R+-tree and R+-tree query
execution time is better by 1-4-1.8 times as compared to default
non-indexed Hadoop. In overall, query performance becomes
better for index-dataset and the proposed index is better than
R+-tree index in MapReduce.
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6. CONCLUSIONS AND FUTURE SCOPE

The proposed parallel index, H-bucket PMR Quadtree, is an im-
plementation of existing bucket-PMR Quadtree in MapReduce.
The index is inclined towards processing curvilinear spatial ob-
jects and ensures an improved efficiency for index build-time and
search queries. It is compared with the MapReduced based state-
of-the-art R+-tree implementation (Zhong et al. 2012). The
experimental demonstration for line and range search queries
proves superiority of the proposed index. The proposed index
is built as a local index by all participating computing nodes in
the cluster, and is accessed through a global index maintained
by master node.

The proposed index strongly supports regular decomposition
based approach in Quadtrees that requires less time to split an
overflowing node for improving index building time over ir-
regular disjoint decomposition based approach, such as R+–
tree. The comparison of indexed approaches with non-indexed-
Hadoop implementation shows that indexing improves data ac-
cess in the Hadoop. Further, index building time and query exe-
cution time improve with increasing bucket size and cluster size.
It is found through experimental analysis that for polygon map
dataset for the five counties of Califonia state, the index build
time of the proposed index is better by 20–50% than R+-tree in
MapReduce. The index build time is best for tree node/bucket
size of 64KB, which is the data-transfer size of packets in the
Hadoop. Similarly, the proposed parallel index is more efficient
than R+-tree in MapReduce for search queries and takes approx-
imately 30–50% less time as compared to latter one. The pro-
posed index is more efficient than default non-indexed Hadoop
by 50–70% for search queries.

In future, we wish to test scalability of H-bucket PMR
Quadtree for large datasets to further validate the implementa-
tion and search/develop a more efficient spatial index algorithm
in MapReduce environment.
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